DOI: http://dx.doi.org/10.18782/2320-7051.2411

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **4** (6): 193-203 (2016)

Research Article

Woody Species Composition and Diversity Analysis in the S.T. Hindu College Campus Located at Nagercoil, Kanniyakumari District, Tamil Nadu, India

R. Neelamegam¹*, M.M. Preetha², K. Priya³, B. Sathiya⁴, and L.Vanaja⁵

 ^{1, 2,3,4,5} Department of Botany & Research Centre, S.T. Hindu College, Nagercoil -629002, Kanniyakumari District, Tamil Nadu, India
 *Corresponding Author E-mail: rnmegamsthcngl@gmail.com Received: 26.11.2016 | Revised: 8.12.2016 | Accepted: 14.12.2016

ABSTRACT

A survey was carried out to record the status, composition and diversity of woody plant species (includes trees, shrubs and lianas) growing in the S.T. Hindu College (known as South Travancore Hindu College) campus (STHC), located in Nagercoil town, headquarter of Kanniyakumari District, Tamil Nadu, India. The survey results indicate that the total number of woody plants recorded in the STHC campus is 872 belongs to 29 families 50 genus and 50 species. The woody species comprises 90% trees, 8% shrubs and 2% lianas. Among the 29 families, Caesalpineaceae and Mimosaceae represented more number (4) of genus and species whereas the Verbinaceae family contains maximum (204) number of individuals of woody plants. About 62% of the woody species comes under <50cm GBH and 64% comes under <15cm DBH size categories. Of the 50 species, Tectona grandis represent maximum number of individuals (196) and higher relative density (RD=22.48) while maximum relative dominance noted in Pheltophorum pterocarpum (RDo=26.96) and total basal area ($TBA=133462.20cm^2$), and maximum average basal area (ABA=3289.34cm²) was represented by Terminalia indica. Based on number of individuals/species, 74% of the species with 13.07% individuals comes under rare and very rare category, while 12% of the species with 76.83% individuals comes under dominant and predominant category. Based on relative density (RD), about 5 species are abundant with RD=72.59%, 7 species under rare (RD=10.67%) and 37 species under threatened/endangered category with RD=12.50%. In the study area, woody species diversity was estimated in the form of Shannon-Weaver's Species Diversity (H'=2.556), Shimpson's Dominance Index/Diversity (DI/D=0.124), Simpsons Concentration of Dominance (cd/ λ =0.876), Margalef's Index of Species Richness ($R_{Margalef} = 7.238$), Pielou's index of Species Evenness ($E_{Pielou's} = 0.655$), and Species Heterogeneity (0.936). The results indicate that proper management and conservative measures need to be implemented for conservation of woody plant varieties in the S.T. Hindu College campus.

Key words: Woody species, Diversity Indices, S.T. Hindu College, Nagercoil, Kanniyakumari District, Tamil Nadu.

Cite this article: Neelamegam, R., Preetha, M.M., Priya, K., Sathiya, B. and Vanaja, L., Woody Species Composition and Diversity Analysis in the S.T. Hindu College Campus Located at Nagercoil, Kanniyakumari District, Tamil Nadu, India, *Int. J. Pure App. Biosci.* **4**(6): 193-203 (2016). doi: http://dx.doi.org/10.18782/2320-7051.2411

INTRODUCTION

The natural forests are diminishing under pressures of urbanization and other human interferences. Urban landscapes and trees have been wonderful silent major urban infrastructure assets in our cities for decades and even centuries. Cities are biodiversity hot spots due to their variety of habitats available in public and private open spaces, including front and backyards. Planting trees in rural as well as in and around human settlements and cities will help increasing the forest cover, reduce pressure on forests and provide various services and goods to meet several demands. Trees are also important in the socio-cultural lives of the people. Floristic diversity assessment is tried at local levels to understand the present status and make effective management strategies for conservation. Trees outside the forest are an important resource and play a key role in sustainable biodiversity management. Since species diversity is important to maintain heterogeneity of a stable ecosystem, the diversity is to be preserved through appropriate measures. There is a need for an accelerated survey of plant resources with the objectives to conserve the aesthetic and economically important wild and semidomesticated species¹. Various studies²⁻⁹ reported the status, composition, phytosociological attributes and diversity of flora in the campus of educational institutes in Tamilnadu. The present study was carried out to document the status, distribution pattern and diversity of woody plant species in the campus of S.T. Hindu College (known as South Travancore Hindu College) located in Nagercoil Municipality town, the headquarter of Kanniyakumari District, Tamil Nadu, India.

MATERIALS AND METHODS

Study Area

The study area, S.T. Hindu College (STHC), known as South Travancore Hindu College, located (8.182903°N; 77'40638°E) in Nagercoil Municipality Town, headquarter of Kanniyakumari district, Tamil Nadu, India. Kanniyakumari district is situated in the southernmost tip of Tamil Nadu, Southern

Copyright © December, 2016; IJPAB

Peninsular India (77.15'-77.30'E; 8.30'-8.15' N) located in the part of Southern Western Ghats. The South Travancore Hindu College Association with temple trusts and individuals as shareholders was registered as a company on 1952 with a view to promoting the cause of higher education is South Travancore, now known as Kanniyakumari District. The college was granted affiliation on 1952 by the University of Travancore. The college was started as an intermediate college in 1952. In 1957, the college was first came to be affiliated to the University of Madras, then to Madurai Kamaraj University in 1966 and finally Manonmaniam Sundaranar to University in 1990. The college is located in the central part of Nagercoil, a semi-urban town, near Chettikulam junction. The college campus enriched with beautiful vegetation and occupies a land area of 21.95 acres.

Data Collection

An inventory of woody plant species was conducted in the campus of S.T. Hindu College, from July, 2014 to August, 2014. All woody species (Girth size ≥ 10 cm) present in the study area were identified and recorded by the botanical name or by local name that was later confirmed by using the regional flora. All individuals of woody species (trees, shrubs and lianas) are counted and recorded except the individuals in hedgerows. No herbs were counted due to the difficulty in differentiating stems. The botanical inventory was conducted only once in the study area. Thus, the seasonal variation in woody species structure was not assessed. Species were identified using regional floras^{10, 11} for all documental species. The binomial and author citation were checked thoroughly with IPNI¹². The woody (climbers, shrub and plant's trees) community organization, distribution and diversity studies were conducted by survey method. In the present study, the woody plants (with a girth size ≥ 10 cm at breast height-GBH) in the study area were counted. Woody species were assigned to different size classes based on GBH: 10-50, 50-100, 100-150, 150-200, \geq 200cm; and to different DBH size classes: <15, 15-30, 30-45, 45-60 and ≥60cm.

Int.	J.	Pure	ADD.	Biosci.	4	(6):	193-	-203	(201)	6
	•••		p p ·	21000011	-	(0).		-00	(~

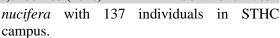
ISSN: 2320 - 7051

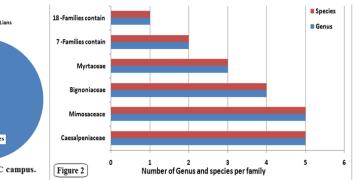
Data Analysis Various attributes and diversity indices of woody plants were determined following standard methods. The basal area of each species is computed using the values of GBH and DBH to determine total basal area of all species and average basal area of individual species as well as all the species. The basal area was also used to determine the relative density and relative dominance of woody species. Based on the number of individuals in each species, the woody plants were grouped into very rare (represented by <2 individuals), rare (2 - <10 individuals), common (10 - <25)individuals), dominant (25-50 individuals) and predominant (>50 individuals) following

5) Kadavual and Parthasarathy¹³. The various woody species were scored according to their relative densities (RD) to determine, weather the species comes under abundant (RD \geq 5.00); frequent (4.0 \leq RD \leq 4.99); occasional $(3.00 \le \text{RD} \le 3.99)$; rare $(1.00 \le \text{RD} \le 2.99)$; or threatened / endangered ($0.00 \le RD \le 1.00$) category¹⁴ (Daniel et al., 2012). Ten top ranking species were determined based on of the species for total value all phytosociological parameters of woody species. Data obtained from tree species composition was analyzed to obtain relative density (RD), relative abundance (RA/Pi) and the relative dominance was estimated based on total basal area (RDo)¹⁴⁻¹⁶.

$$\begin{aligned} \text{Relative Density } (\text{RD\%}) &= \frac{\text{No. of individuals of each species}}{\text{Total no. of individuals of all species}} \ x \ 100 \\ \text{Relative abundance } (\text{RA/Pi}) &= \frac{\text{Relative density of species}}{100} \\ \text{Domiance } (\text{Do}) &= \frac{\text{Basal area of the individual species}}{\text{Basal area of all the species}} \\ \text{Relative Dominance } (\text{RDo\%}) &= \frac{\text{Total Basal Area of each species}}{\text{Total Basal of all species}} \ x \ 100 \end{aligned}$$

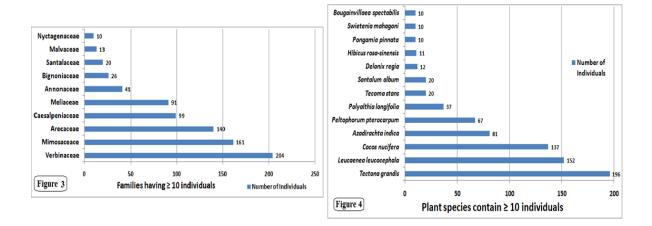

Standard methods were followed to estimate different diversity indices. Data obtained from relative density (abundance) ($P_i = n_i/N$) was used to compute the Shannon - Weaver's (Weiner's) Diversity index¹⁷ for the study area, i.e., $H' = -\Sigma P_i I_n P_i$. Where, H' =Shennon-Weaver's Diversity index; P_i =relative abundance of the 'i'th species; InP_i =Natural logarithm of the corresponding relative abundance (Pi = ni/N) of the species. Margalef index of species richness (SR) is calculated by using the formula: $SR = \frac{S-1}{I_n(N)}$; Where, S =Number of species; N =Total number of individuals^{18, 19}. Pielou's index of species evenness²⁰ was computed using the formula: $E_{Pielou} = \frac{H'}{I_n(S)}$; Where, H' = Shannon-Weiner's Diversity Index; $I_n = Natural logarithm of$ species; S =Number of species. Simpson's diversity (D) is calculated by using the formula: $D = 1 - \lambda^{19, 21}$, Where, $\lambda =$ Simpson's concentration of dominance $(1-\sum P_i^2)$; $P_i =$ n_i/N ; n_i =Number of individuals in each species; N =Total number of individuals in all species. Simpson's Dominance Index (DI)^{22, 23} was determined by using the formula: DI $=\Sigma(\mathrm{Pi})^2$; Where, Pi =ni/N. Species Copyright © December, 2016; IJPAB


heterogeneity, defined as the reciprocal of Simpson index or under root of concentration of dominance (cd), was determined as: $=\frac{1}{\sqrt{cd}}$.


RESULTS AND DISCUSSION Attributes of woody species

In this study, the data collected from S.T. Hindu College campus by survey method was analyzed to record the phytosociological attributes and diversity of woody plants. Table 1- shows the botanical name, common name, family, number of individuals/species, GBH (cm) and DBH (cm) of woody plants identified. A total of 50 woody species belongs to 50 genus and 29 families with 872 individuals were recorded in the study area. A floristic study carried out by Parthipan et al.⁹ in the campus of S.T. Hindu College indicate the presence of 89 woody species (includes 47 trees and 42 shrubs). The less number of woody species recorded in this study as compared to number of species reported earlier⁹ may be due to counting woody species with ≤ 10 cm girth (gbh) size only. Figure 1 shows the distribution pattern of woody species recorded in the study area includes 45 trees, 4 shrubs and 1 liana. Among the species,

Tectona grandis having maximum number of 196 individuals and is followed by *Leucaenea leucocephala* with 152 individuals and *Cocos*



STHC campus has two dominant family -Caesalpineaceae and Mimosaceae, with 5genus and species each, and one co-dominant family (Bignoniaceae) with 4genus and species (Figure 2). Top 10 families and species having more number of individuals are presented in figures 2 and 3. Among the families, Verbinaceae having 204 individuals and is followed by Mimosaceae with 161 individuals and Arecaceae with 140 individuals (Figure 3). Among the top 10 species (Figure 4), Tectona grandis is dominant with 196 individuals (22.48%) and Leucaenea leucocephala is co-dominant with 152 individuals (17.43%), and Cocos nucifera with 137 individuals (15.71%).

GBH and DBH Measurements

The measurement of tree growth provided important information about the dynamics of that ecosystem. In the present study, the girth/diameter (GBH/DBH) size of the woody species (>10 cm/>3.18 cm) were measured and used to analyze various other factors. The girth of the woody species varied from 10 cm

GBH/3.18 cm DBH (in Duaranta plumieri) to 349cm GBH/111.15 cm DBH (in Peltophorum *pterocarpum*) and the average girth size ranges from 13.25 cm GBH/4.22 cm DBH (in Duaranta plumier) to 201.50 cm GBH/64.17 cm DBH (in Enterolobium saman) (Table 1). The estimated total girth (GBH) size of woody plants was ranged from 25 cm (Muntingia calabra) to 13629.50 cm (Techtona grandis) with an average of 1222.97 cm per species and 70.12 cm per individual. The total diameter (DBH) of the woody plants was estimated and it was ranged from 7.96 cm (Muntingia calabra) to 4340.61 cm (Tectona grandis) with an average of 389.48 cm/species and 22.33 cm/individual. Usually, 200cm girth size of trees is considered as mature. In STHC campus, from the total of 872 individuals of 50 woody species counted, 9 individuals (3 from Azadirachta indica and 2 from Delonix regia, and each one from Mangifera indica, Syzigium cumini, Terminalia indica, and Enterolobium saman) belongs to 6 species measured over 200cm GBH/64cm DBH (Table 2).

Int. J. Pure App. Biosci. 4 (6): 193-203 (2016)

Category of Woody Plants

The woody plants identified in the study area were categorized based on GBH/DBH size classes, no. of individuals/species, and relative density/species. To determine the population structure of woody species in the study area, the plants were categorized into different girthclass and diameter-class. The size class distribution of woody species can provide a reliable overall indication of changes in species selection overtime^{24, 25}. Although data on species distribution in time are not available, size class distributions to differentiate between species which have been planted over a number of years (which should have a more evenly distributed age structure), from species which have been selected for planting recently (whose distribution should be dominated by smaller trees), or species which have been planted widely in the past and recently been discontinued (whose distribution should therefore be dominated by larger trees)^{26, 27}.

 Table 1: List of woody species recorded in the study area of S.T. Hindu College Nagercoil,

 Kanniyakumari District, Tamil Nadu

Sl. No.	Botanical Name of the species	Common name	Family	Life form	NI	GBH (cm)*	DBH (cm)*
1	Acacia mangium Wild	Mangium	Mimosaceae	Tree	1	62.00	19.75
2	Albizzia lebbeck Benth (Lin)	Vagai	Mimosaceae	Tree	4	83.00	26.44
3	Annona squamosa L.	Setha	Annonaceae	Tree	4	21.75	6.93
4	Azadirachta indica A. Juss.	Vembu	Meliaceae	Tree	81	89.40	28.47
5	Bambusa arundinacea Willd	Moongil	Poaceae	Tree	4	24.75	7.88
6	Bougainvillaea spectabilis	Paper rose	Nyctagenaceae	Lians	10	25.10	7.99
7	Callistemon lanceolatus Dc.	Bottle brush	Mvrtaceae	Tree	1	54.00	17.20
8	Carvota urens L.	Koondalpanai	Arecaceae	Tree	3	105.00	33.44
9	Cassia fistula L.	Kanikonnai	Caesalpeniaceae	Tree	8	68.63	21.86
10	Casuarina equisetifolia Forst.	Savukku	Casuarinaceae	Tree	2	140.00	44.59
11	Cocos nucifera L.	Thennai	Arecaceae	Tree	137	80.81	25.73
12	Crescentia alata L	Thiruvodu	Bignoniaceae	Tree	1	46.00	14.65
13	Cvcas circinalis L.	Cvcas	Cycadaceae	Tree	1	182.00	57.96
14	Delonix regia (Bol) Raf.	Gulmohar/kattuthee	Caesalpeniaceae	Tree	12	90.17	28.72
15	Dracana angustifolia (Medik.) Roxb.	Dracanea	Liliaceae	Shrub	3	20.67	6.58
16	Duranta plumeri Jacq.	Golden dew drrop	Verbinaceae	Tree	8	13.25	4.22
17	Eleocarpus tuberculatus Roxb	Uthracham	Eleocarpaceae	Tree	1	74.00	23.57
18	Emblica officinalis Gaertn.	Nelli	Euphorbiaceae	Tree	4	40.00	12.74
19	Entrolobium saman (Jeca) Prain.	Rain tree	Mimosaceae	Tree	2	201.50	64.17
20	Ficus religiosa L.	Arasu	Moraceae	Tree	1	43.00	13.69
21	Hibiscus rosa-sinensis L.	Sembaruthi	Malvaceae	Shrub	11	21.36	6.80
22	Jacaranda mimosifolia D.Don.	Jacaranda	Bignoniaceae	Tree	1	36.00	11.46
23	Lawsonia inermis L.	Maruthani	Lythraceae	Tree	1	30.00	9.55
24	Leucaenea leucocephala (Lam) de Wil.	Cubapul	Mimosaceae	Tree	152	32.29	10.28
25	Madhuca indica J.f. Gemel.	Eluppai	Sapotaceae	Tree	3	89.33	28.45
26	Mangifera indica L.	Mango	Anacardiaceae	Tree	8	145.38	46.30
27	Michella champaca L.	Chempakam	Magnoliaceae	Tree	1	43.00	13.69
28	Millingtonia hortensis L.	Panneerpoo	Bignoniaceae	Tree	4	22.25	7.08
29	Mimusops elengi L	Mazhizham	Sapotaceae	Tree	4	75.25	23.97
30	Morinda pubescens Roxb. Var.	Manjanathi	Rubiaceae	Tree	8	60.63	19.31
31	Muntingia calabra L.	Kuruvipalam	Tiliaceae	Tree	1	25.00	7.96
32	Murraya koeingii (L) Spr.	Karuvepilai	Rutaceae	Tree	4	18.00	5.73
33	Peltophorum pterocarpam (DC) Backerx. Heyne	Perunkonrai	Caesalpiniaceae	Tree	67	140.68	44.80
34	Pithecelobium dulce (Roxb) Bth.	Kodukapuli	Mimosaceae	Tree	2	44.50	14.17
35	Plumeria obtusa L.	White temple tree	Apocynaceae	Tree	1	80.00	25.48
36	Polyalthia longifolia (Sonn) Thw.	Azoka	Annonaceae	Tree	37	85.05	27.09
37	Pongamia pinnata (L) Pierre	Pungam	Caesalpiniaceae	Tree	10	73.70	23.47
38	Prosopis spicigera Linn.	Vanni	Fabaceae	Shrub	5	76.20	24.27
39	Psidium gujava L.	Коууа	Myrtaceae	Tree	2	17.00	5.42
40	Santalum album L.	Santal	Santalaceae	Tree	20	28.65	9.12
41	Saraca asoca (Roxb) deWillde.	Asokam	Caesalpeniaceae	Tree	20	60.50	19.27
42	Swietenia mahagoni (L.)	Mahagoni	Melioaceae	Tree	10	71.80	22.87
43	Syzigium cumini (L.) Skeels.	Navalmaram	Mvrtaceae	Tree	2	196.50	62.58
44	Tabernaemontana divaricata R.Br. exRoem & Schult	Nandia vavattai	Apocynaceae	Shrub	2	23.00	7.33
45	Taber ndemoniana arvancana K.Br. exitoeni eesenait Tamarindus indica Linn.	Puli	Fabaceae	Tree	2	158.50	50.48
46	Tecoma stans (L.) Hb. & K.	Manjapoo	Bignoniaceae	Tree	20	29.20	9.30
40	Tectona grandis Lf.	Thekku	Verbinaceae	Tree	196	69.54	22.15
48	Terminalia cattappa L.	Badam	Combretaceae	Tree	4	76.50	24.36
48	Terminalia cattappa L. Thespesia populnea Soland.	Poovarasu	Malvaceae	Tree	2	117.50	37.42
50	Zizipus mauritiana Lamk. (I) Gaertn, non Miller	Elanthai	Rhamnaceae	Tree	2	89.50	28.50
		1124dHillidl	INTERNACEAE	i itee	L 2	1 07 10	1 40 10

ISSN: 2320 – 7051

Neelamegam et al Int. J. Pure App. Biosci. 4 (6): 193-203 (2016)

S. No.	Name of the woody species	No. of individuals	GBH (cm)	DBH (cm)
1	Azadirachta indica	3	212.00	67.52
2	Delonix regia	2	229.00	72.93
3	Entrolobium saman	1	208.00	66.21
4	Mangifera indica	1	232.00	73.89
5	Syzigium cumini	1	211.00	67.20
6	Tamarindus indica	1	289.00	91.40

Table 2: Woody plants having more than 200cm GBH and 60cm DBH size category

Table 3: Category of woody species recorded in the study area of STHC

S. No.	Girth (gbh) size class	No. of Species & (%)	No. of individuals & (%)
1	10cm to 50cm	31 (62%)	337 (38.64%)
2	50cm to 100cm	26 (52%)	384 (44.04%)
3	100cm to 150cm	14 (28%)	102 (11.70%)
4	150cm to200cm	8 (16%)	27 (3.10%)
5	≥200cm	7 (14%)	22 (2.52%)
	Total	50 (100%)	872 (100%)
S. No.	Diameter (dbh) size class	No. of Species & (%)	No. of individuals & (%)
1	< 15cm	32 (64%)	321 (36.81%)
2	15cm to 30cm	27 (54%)	357 (40.94%)
3	30cm to 45cm	15 (30%)	140 (16.05%)
4	45cm to60cm	9 (18%)	25 (2.89%)
5	≥60cm	7 (14%)	29 (3.33%)
	Total	50 (100%)	872 (100%)
	Based o	n number of individual	S
S. No.	Woody species category	No. of Species	Total No. of individuals
1	Very rare (< 2)	11 (22%)	11 (1.26%)
2	Rare (2 to 10)	26 (52%)	98 (11.24%)
3	Common (10 to 25)	7 (14%)	93 (10.67%)
4	Dominant (25 to 50)	1 (2%)	37 (4.24%)
5	Predominant (> 50)	5 (10%)	633 (72.59%)
	Total	50 (100%)	872 (100%)
	Based or	n relative density (RDe%	(0)
1	Abundant (\geq 5)	5 (10%)	72.59%
2	Frequent (4 - 4.99)	1 (2%)	4.24%
3	Occational (3 - 3.99)	0 (0%)	0%
4	Rare (1 to 2.99)	7 (14%)	10.67%
5	Threatened/Endangered (0 - 0.99)	37 (64%)	12.50%
	Total	50 (100%)	100%

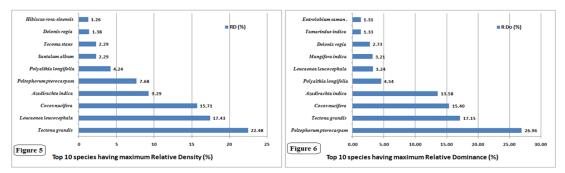
Int. J. Pure App. Biosci. 4 (6): 193-203 (2016)

 Table 4: Estimation of quantitative analysis of woody plants recorded in the STHC campus, Nagercoil, Kanniyakumari District, Tamil Nadu, India

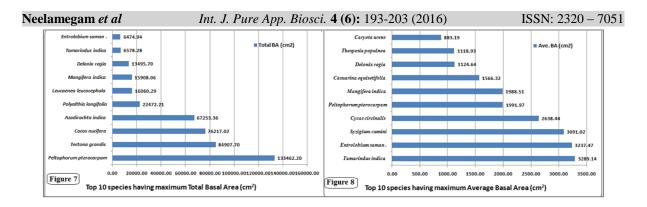
CI 37		NT	Total BA	Average BA	RA	RD	_	RDo
SI. No.	Botanical Name of the species	NI	(cm ²)	(cm ²)	(Pi)	(%)	Do	(%)
1	Acacia mangium	1	306.20	306.20	0.001	0.11	0.0006	0.06
2	Albizzia lebbeck	4	2213.06	553.27	0.005	0.46	0.0045	0.45
3	Annona squamosa	4	153.51	38.38	0.005	0.46	0.0003	0.03
4	Azadirachta indica	81	67253.36	830.89	0.093	9.29	0.1359	13.58
5	Bambusa arundinacea	4	200.08	50.02	0.005	0.46	0.0004	0.04
6	Bougainvillaea spectabilis	10	608.20	60.82	0.012	1.15	0.0012	0.12
7	Callistemon lanceolatus	1	232.35	232.35	0.001	0.11	0.0005	0.05
8	Caryota urens	3	2649.56	883.19	0.003	0.34	0.0054	0.54
9	Cassia fistula	8	3444.51	431.80	0.009	0.92	0.0070	0.70
10	Casuarina equisetifolia	2	3132.64	1566.32	0.002	0.23	0.0063	0.63
11	Cocos nucifera	137	76217.02	556.33	0.157	15.71	0.1540	15.40
12	Crescentia alata	1	168.56	168.56	0.001	0.11	0.0003	0.03
13	Cycas circinalis	1	2638.44	2638.44	0.001	0.11	0.0053	0.53
14	Delonix regia	12	13495.70	1124.64	0.014	1.38	0.0273	2.73
15	Dracaena angustifolia	3	105.09	35.03	0.003	0.34	0.0002	0.02
16	Duranta plumeri	8	116.21	14.53	0.009	0.92	0.0002	0.02
17	Eleocarpus tuberculatus	1	436.32	436.32	0.001	0.11	0.0009	0.09
18	Emblica officinalis	4	538.32	134.58	0.005	0.46	0.0011	0.11
19	Entrolobium saman .	2	6474.94	3237.47	0.002	0.23	0.0131	1.31
20	Ficus religiosa L.	1	147.20	147.20	0.001	0.11	0.0003	0.03
21	Hibiscus rosa-sinensis	11	418.87	38.08	0.013	1.26	0.0008	0.08
22	Jacaranda mimosifolia	1	103.15	103.15	0.001	0.11	0.0002	0.02
23	Lawsonia inermis	1	71.59	71.59	0.001	0.11	0.0001	0.01
24	Leucaenea leucocephala	152	16060.29	105.66	0.174	17.43	0.0324	3.24
25	Madhuca indica	3	1974.70	658.23	0.003	0.34	0.0040	0.40
26	Mangifera indica	8	15905.02	1988.51	0.009	0.92	0.0321	3.21
27	Michella champaca	1	147.20	147.20	0.001	0.11	0.0003	0.03
28	Millingtonia hortensis	4	216.82	54.20	0.005	0.46	0.0004	0.04
29	Mimusops elengi	4	1815.03	453.76	0.005	0.46	0.0037	0.37
30	Morinda pubescens .	8	2508.68	313.58	0.009	0.92	0.0051	0.51
31	Muntingia calabra	1	49.76	49.76	0.001	0.11	0.0001	0.01
32	Murraya koeingii	4	104.30	26.07	0.005	0.46	0.0002	0.02
33	Peltophorum pterocarpam	67	133462.20	1991.97	0.077	7.68	0.2696	26.96
34	Pithecelobium dulce	2	435.94	217.97	0.002	0.23	0.0009	0.09
35	Plumeria obtusa	1	509.90	509.90	0.001	0.11	0.0010	0.10
36	Polyalthia longifolia	37	22472.21	607.36	0.042	4.24	0.0454	4.54
37	Pongamia pinnata	10	4544.82	454.48	0.012	1.15	0.0092	0.92
38	Prosopis spicigera	5	2329.22	465.84	0.006	0.57	0.0047	0.47
39	Psidium gujava	2	46.70	23.35	0.002	0.23	0.0001	0.01
40	Santalum album	20	1462.98	73.15	0.023	2.29	0.0030	0.30
41	Saraca asoca	2	583.98	291.99	0.002	0.23	0.0012	0.12
42	Swietenia mahagoni	10	4697.61	469.76	0.012	1.15	0.0095	0.95
43	Syzigium cumini	2	6182.03		0.002	0.23	0.0125	1.25
44	Tabernaemontana divaricata	2	84.39		0.002	0.23	0.0002	0.02
45	Tamarindus indica	2	6578.28		0.002	0.23	0.0133	1.33
46	Tecoma stans	20	1439.49		0.023	2.29	0.0029	0.29
47	Tectona grandis	196	84907.70		0.225	22.48	0.1715	17.15
48	Terminalia cattappa	4	1888.02		0.005	0.46	0.0038	0.38
49	Thespesia populnea	2	2237.85		0.002	0.23	0.0045	0.45
50	Zizipus mauritiana	2	1282.61		0.002	0.23	0.0026	0.26
	Total	872	495052.61	31721.67	1.000	100.00	1.0000	100.00
BA -Basal area; RA -Relative abundance; RD -Relative density; D -Dominance; RDo -Relative dominance.								

ISSN: 2320 - 7051

In the study area, most of individual comes under the girth size class of 15cm to 100cm GBH shows 44.04% (384 individuals and 26 species), whereas the diameter size class of <15cm to 30cm DBH shows 40.94% (257 individual and 27 species). This indicates that the majority of the woody species are young and recently planted. Very few species are found in the >200cm GBH and >60cm DBH size class appears to indicate that these species are matured and being gradually phased out in the study area. These species appear to be replaced by other plants.


The distribution pattern of woody scored according species to different categories such as number of individuals per species and relative density in the study area. Based on the number of individuals/species, the woody plants are categorized into very rare, rare, common, dominant, and predominant. In STHC campus, most of the species (52%) comes under rare category. In general, rare and very rare category (<10 individual/species) found in 37 species (11.37%) of woody plants while 6 species comes under dominant and predominant category with 670 individuals which is about 76.83% (Table 3). Based on relative density, the woody species are categorized into abundant, frequent, occasional, rare and threatened/endangered. In the study area, about 78% species comes under rare and threatened category (RD 0 to 2.99).

Phytosociological attributes of woody species


The results of relative abundance (RA/Pi) of woody species presented in table 4 and it ranges from 0.001 to 0.225, and maximum RA is noted in *Techtona grandis* and is followed by *Leucaenea lucocephala* (0.174) and *Cocos*

nucifera (0.154). Relative density (RD %) of woody species recorded in STHC campus presented in table 4 and it ranges from 0.11 to 22.48 with a maximum in Tectona grandis. Figure 5 shows top 10 woody species having maximum relative density. Among the woody plants, above 10% of RD was noted in Tectona grandis (22.48%), Leucaenea lucocephala (17.41%) and Cocos nucifera (15.71%). The results of relative dominance (RDo) indicate that the relative dominance of woody species ranged from 0.01% (in Psidium gujava and 26.96% Muntingia *calabra*) to (in Peltophorum pterocarpum).

Total basal area (Dominance) of the woody species considered as dominance and relative dominance parameter. The TBA of all the woody species (Table 4) in the study area is estimated as 495065.55cm² and is ranged from 46.70cm^2 (in *Psidium gujva*) to 133462.26cm² (in *Peltophorum pterocarpum*) with an average of 9901.31cm²/species and 567.74cm²/individual. Figure 7 shows the top 10 woody species having maximum TBA (dominance). Among the top 10 species, Peltophorum pterocarpum shows more TBA (133462 cm^2) and is followed by *Tectona* grandis with 84907.70cm² as compared to other species. The average basal area (ABA) of the woody species in STHC campus ranged from 14.53cm² (in *Duaranta plumieri*) to 3289.14cm² (in *Tamerindus indica*) with a total average basal area of 31721.07cm² (Table 5). Figure 8 shows top 10 woody species having maximum ABA in the study area. Three woody species -Tamarindus indica, Entralobium saman, and Syzigium cumni comes under top 10 categories in the study site with higher average basal area.

Copyright © December, 2016; IJPAB

Diversity of woody species

Species diversity is one of the most important measures of community structure and it has been related to various ecological factors. The diversity of woody species, particularly trees is fundamental to plant diversity because they provide resources and habitats for almost all other species²⁸. In this study, various diversity indices- Shannon-Weaver's Species Diversity Index, Simpson's Species Diversity Index, Species Richness, Species Evenness, and Indices of Heterogeneity of woody species were estimated (Table 5).

Table 5: Diversity indices of woody species in the study area of STHC

S. No.	Diversity Indices					
1	Shannon-Weaver Species Diversity Index (H')	2.556				
2	Simpson's Diversity (D)/ Dominance Index (DI)	0.124				
3	Margalef's Index of Species Richness (R _{Margalef})	7.238				
4	Pielou's Index of Species Evenness (E _{Pielou})	0.655				
5	Simpson's Concentration of Dominance (cd/λ)	0.876				
6	Species Heterogenity	0.936				

Shannon-Weaver's Species Diversity Index (H') of woody species in the study area is noted as H' =2.567, whereas the Simpson's Dominance/Diversity Index is estimated as (D/DI =0.124). Mousumi Garai *et al.*²⁹ reported Shannon index value of tree species ranges from 2.435 to 2.788 and also recorded dominance index (D) of tree species ranges from 0.072 to 0.115 in three study sites of Durgapur Government college campus. The lower species diversity indicates heterogenous distribution of woody species in STHC campus. The lower diversity could be due to lower rate of evolution and diversification of communities³⁰.

The concept of species diversity relates simply to "richness" of a community or geographical area in species. In this study, Morgalef index of species richness was estimated as $SR_{Margalef} = 7.238$ (Table 5).

Mousumi Garai *et al.*²⁹ recorded Margalef's species richness index of tree species ranges from 3.795 to 4.991 in three study sites of Durgapur Government college campus. Tree species richness at defined study sites and in minimum diameter classes gives a reliable instrument to indicate the diversity level of a study site³¹.

Pielou's Index of Species Evenness was noted as $E_{Pielou} = 0.655$ in the study area (Table 5). Mousumi Garai *et al.*²⁹ noted an evenness index value as 0.7186 to 0.8123 for tree species in three study sites of Durgapur Government college campus. Simpson's Concentration of Dominance (λ) of woody species was estimated in the study area and the results (Table 5) indicate that the concentration of dominance is $\lambda = 0.876$. Species heterogeneity attribute of woody species in the study area is recorded as SH =0.936 (Table 5).

Plant diversity of an area is related to a variety of factors. Attempts to identify the trends in geographical distribution of plant diversity are The an important task. saving and establishment of plant communities is an essential duty of human society for conservation and avail the immense benefits of biodiversity. From the results of present study, it is concluded that proper management and conservative measures need to be implemented for conservation of woody plant varieties in the study area of S.T. Hindu College campus in Nagercoil. Because, the distribution pattern of most of the woody species found in the study area are comes under rare/very rare as well as contagious (patchy) communities. The results of this study also stress that there is a need to carry out efforts to documenting the available plant species in the human habitats, which can be lost from the natural environment, otherwise it will leads to desertification which associated with human activities.

Acknowledgement

The authors express sincere thanks to the Management Authorities, Principal. S.T. Hindu College, and HOD, Department of Botany & Research Centre, S.T. Hindu College, Nagercoil, Kanniyakumari District, Tamil Nadu, India for providing necessary facilities and encouragement.

REFERENCES

- 1. Maheswari, J.K., Plant resources of India. Science and Culture, 42: 18-23 (1976).
- 2. Giles-Lal, D. and Livingstone, C., Campus flora of Madras Christian College, Madras: The Balussery Press, p. 78 (1978).
- 3. Natarajan, S. and Gobi, M., Herbal wealth of Guru Nanak College, Chennai, India. Journal of Theoretical and Experimental Biology, 7(1&2): 17-27 (2010).
- 4. Udayakumar, M., Ayyanar, M. and Sekar, T., Angiosperms, Pachaiappa's College,

Chennai, Tamilnadu, India. Check List, 7(1): 37-46 (2011).

- 5. Rajendran, R., Aravindhan, V. and Sarvalingam, A., Biodiversity of the Bharathiyar University campus, India. A floristic Approach. Int. J. Biodiver. and Conser., 6(4): 308-319 (2014).
- 6. Rekha, D. and Pannerselvam, A., Flora of a Veeriya Vandayar Memorial Sri Pusshpam College campus. J. Biol. & Sci. Opinion, 2(4): (2014).
- 7. Rekha, D., Pannerselvam, A. and Thajuddin, N., Studies on medicinal plants of A.V.V.M. Sri Pushpam College campus, Thanjavur District of Tamilnadu, Southern India. World Journal of Pharma Research, 3(5): 785-820 (2014).
- 8. Sarasabai, T., Brintha, S., James, E.J. and Jeeva, S., Vascular plants, Scott Christian College, Nagercoil, Tamilnadu, India. Science Research Reporter, 5(1): 36-66 (2015).
- 9. Parthipan, B., Rajeswari, M. and Jeeva, S., Floristic Diversity of South Travancore Hindu College (S.T. Gindu College) Kanniyakumari campus, District, (Tamilnadu) India. Biosciences Discovery, 7(1): 41-56 (2016).
- 10. Gamble, J.S. and Fischer, C.E.C., Flora of the Presidency of Madras. 3 Vols. London: Adlard and Son Ltd. 2017 p. (1921-1935).
- 11. Matthew, K.M., An excursion Flora of Central Tamil Nadu, Tiruchirappalli: Rapinat Herbarium. 682 p. (1991).
- 12. IPNI, The International Plant Names Index. Accessed at http://www.ipni.org. (2013).
- 13. Kadavual, K. and Parthasarathy, N., Plant biodiversity and conservation of tropical semi-evergreen forest in the Shervarayan hills of Eastern Ghats, India. 8: 421:433 (1999).
- 14. Daniel, I.E., Henry, M.I. and Augustine, U.O., Preliminary assessment of tree species diversity in Afi Mountain Wildlife

Copyright © December, 2016; IJPAB

Int. J. Pure App. Biosci. 4 (6): 193-203 (2016)

Sanctuary, Southern Nigeria. Agric. Biol. J. N. Am., 3(12): 486-492 (2012).

- 15. Sharma, P.D., Ecology and Environment. 7th ed. Rostogi Publication, Meerut, p. 175-186 (2004).
- 16. Kanade, R., Tadwalkar, M., Kushalappa, C. and Patwardhan, A., Vegetation composition and wood species diversity at Chandoli National Park, Northern Western Ghats, India. Current Science, 95(5): 637-646 (2008).
- 17. Shannon, C. E. and Weaver (Weiner), W., The *Mathematical* Theory of Communication. University of Illinois Press, Urbana, USA. (1963).
- 18. Margalef, D.R., Information theory in ecology. General Systematic Bulletin, 3: 36-71 (1958).
- 19. Sagar, R., Ragubanshi, A.S. and Singh, J.S., Tree species composition, dispersion and diversity along disturbance gradient in a dry tropical forest region of India. Forest Ecology and Management, 186: 61-71 (2003).
- 20. Pielou, E.C., The measurements of diversity in different types of biological collections. J. Theor. Biol., 13: 131-144 (1966).
- 21. Berger, W.H. and Parker, F.L., Diversity of planktonic forminifera in deep-sea sediments. Science, 168: 1345-1347 (1970).
- 22. Simpson, E.H., Measurment of diversity. Nature, 163: 688. (1949).
- 23. Mishra, B.P. and Jeeva, S., Plant diversity and community attributes of woody plants in two climax subtropical humid forests of Meghalaya, Northeast India. Applied

Ecology and Environmental Research, 10(4): 417-436 (2012).

- 24. Sanders, R.A., Diversity and stability in a street tree population. Urban Ecol., 7: 159-171 (1983).
- 25. Welch, J.M., Street and park trees of Boston: a comparison of urban forest structure. Landsc Urban Plan., 29: 131-143 (1994).
- 26. Nagendra, H. and Gopal, D., Tree diversity, distribution, history and change in urban parks: Studies in Bangalore, India. Urban Ecosyst, DOI 10.1007/s11252-010-0148-1. (2010).
- 27. Nagendra, H. and Gopal, D., Tree diversity, distribution, history and change in urban parks: Studies in Bangalore, India. Urban Ecosystems, 14: 211–223 (2011).
- 28. Huston, M.A., **Biological** diversity. Cambridge University Press, Cambridge. (1994).
- 29. Mousumi Garai, Debalina Kar, Debnath Palit and Arnab Banerjee., Phytosociological assessment of vegetation of Durgapur Government College campus, Durgapur, West Bengal, India. Int. Journal of Engineering Research and Applications, 3(6): 835-840 (2013).
- 30. Connel, J.H. and Orias, E., The ecological regulation of species diversity. Am. Nat., **48:** 399-414 (1964).
- 31. Wattenberg, I. and Breckle, S.W., Tree species diversity of a pre-montane rain forest in the Cordillera de Tilaran. Costa Rica. Ecotropica, 1: 21-30 (1995).